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INTRODUCTION 

Neutron Spin Echo (NSE) is a particular experimental technique in inelastic 

neutron scattering. It is substantially different from the other, the "classical", 

methods both conceptually and technically. Conventionally, an inelastic neutron 

scattering experiment consists of two steps, viz. preparation of the incoming mono- 

chromatic beam and analysis of the scattered beam. The values of the measured 'energy 

and momentum transfer are then determined by taking the appropriate differences bet- 

ween the incoming and outgoing parameters measured in the two above steps. In NSE, 

both the incoming and outgoing velocity of a neutron (more precisely g~ven components 

of these) are measured by making use of the Larmor precession of the neutron's spin. 

This kind of measurement could be called "internal" for each neutron, since the 

Larmor precession "spin clock" attached to each neutron produces a result stored on 

each neutron as the position of the spin vector serving like the hand of a clock. 

This is in contrast to the classical monochromatization or analysis, in which cases 

neutrons within a given velocity band are singled out "externally", i.e. by a select- 

ing action measuring equipment. This difference is the technical one. In addition, 

since the Larmor precession information on the incoming velocity (component) of each 

neutron is stored on the neutron itself, it can be compared with the outgoing veloc- 

ity (component) of one and the same neutron. Thus in NSE the velocity (component) 

change of the neutrons can be measured directly, in a single step, which is its con- 

ceptual novelty. 

In this introductory paper the principles and the different types of applica- 

tions of NSE are described. Although the presentation is self-contained, most tech- 

nical and mathematical details are omitted here. These are extensively dealt with 

in the subsequent contributions and in the original papers reproduced in the Appendix 

of this volume, and the reader will be provided with ample references to these. In 

the first section the basic facts about Larmor precession in a polarized beam and 

the notion of the spin echo action are discussed. The second section is devoted to 

the introduction of the simplified principle of Neutron Spin Echo as a method of 

inelastic neutron scattering spectroscopy, applicable to quasi-elastic and non-dis- 

persive inelastic scattering processes. The following section gives the generaliza- 

tion of the NSE principle for the study of dispersive elementary excitations; the 



final one describes the effect of sample magnetism introducing the notions of Para- 

magnetic, Ferromagnetic and Antiferromagnetic NSE. 

I. LARMOR PRECESSION AND SPIN ECHO 

To the best of my knowledge Larmor precession in a neutron beam traversing a 

magnetic field region was first observed by Drabkin et al. (|) as early as 7969. Un- 

fortunately this work was not known to me until recently; it was in 1972 that I 

started to work on Larmor precession by introducing a simple new technique for turn- 

ing the neutron spin direction in any desired direction with respect to the magnetic 

field direction (2) (see also the Appendix). This technique is described in the fol- 

lowing paper by Otto Sch~rpf, together with more details about Larmor precessions. 

For the moment it is sufficient to recall that in a neutron beam travelling through 

a homogeneous magnetic field H and polarized originally parallel to the magnetic 
O 

field direction zl]Ho, one can initiate Lmrmor precession by turning the polariza- 

tion direction P perpendicular to the z axis, say into the x direction at a given 

point (surface) A along the trajectory (Fig. 1). 
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Fig. 1. Larmor spin precession of neutrons in a beam and the simple spin 
echo effect. 



This ~ turn initiates the Larmor precession which can be physically characterized, 

for example, by the x component of the neutron polarization - which obviously has a 
I 

value of I at A. The basic fact about Larmor precessions in spin ~ particle beams is 

that they can be exactly described classically except in situations where the Stern- 

-Gerlach effect is appreciable, which only happens in very extreme cases with neutrons. 

This means that the particle beam will be described by a classical velocity distri- 

bution function f(v), and for each point-like particle the "classical" spin vector 

follows the dS/dt=YL[SXH] classical equation of motion. A rigorous quantum mechanical 

proof of this theorem has been described recently by the author (3) . Thus the Larmor 

precession angle ~ for a given neutron at a distance % from A (Fig. I) will be given 

as 

%H 
o (I) 

= YL v ' 

where YL=2.916 kHz/~e. Since we measure ~ with respect to the initial direction x, 

the polarization component P for the beam is given by the beam average 
x 

Px <cos~> = f(v)cos( )dv (2) 

(Notice that here P is given as the Fourier transform of the distribution function 

for ~, viz. F( =v2f(v), which is in fact the wavelength spectrum. This point is dis-- 

cussed in detail in the contribution of John Hayter; and also in the Appendix(4).) 

The behaviour of P with E is easily seen frem Eq.(2). As % increases, the differences 
x 

between ~'s for different v's become bigger and bigger, i.e. the Larmor precessions 

for different neutrons become more and more out of phase. Consequently, the average 

<cos~> will tend to zero, and we obtain the characteristic behaviour of P shown in 
x 

the lower part of Fig. | between A and B; this behaviour was observed by Drabkin et 

al. in 1969. The period of the damped oscillation is obviously related to the average 

beam velocity. Thus the observation of Larmor precessions is a simple way of measuring 

neutron velocities though it tends to be somewhat over-sensitive except for special 

high precision problems such as the one described by W. Weirauch et al. later in this 

volume. This sensitivity is illustrated by the large value of ~=1832 tad for Ho=1OO ~le, 

%=I m and v=1000 m/sec (%=4 ~). 

In order to make more general use of the high sensitivity of Larmor precessions 

we have to eliminate this dephasing effect arising from the velocity distribution 

f(v). This is where the echo principle, common to various physical phenomena (one of 

which is described in the contribution of Badurek, Rauch and Zeilinger), becomes in- 

strumental. In the present case it is realized by making the neutrons precess in the 

opposite sense after a certain time. This happens in section BC in Fig. I, where 

field H I is opposite H o. At point C 



@ = @AB-~BC = YL(Ho%o-H1%1)/v (3) 

and if the configuration is "symmetric", that is, Ho%o=Hi~1 ~ ~p will be zero for all 

velocities v and thus P =<cos~>=1. Obviously, as is also illustrated in Fig. !, P 
x x 

will show the same damped oscillation behaviour on both sides of C as that described 

for point A, since differences in ~ build up in exactly the same way on moving away 

from C. It is clear from Eq.(3) that only the difference Ho~o-Hl~ I is important, and 

in view of this the number of both the forward and the backward precessions, ~AB and 

@BC' respectively, can be arbitrarily big (assuming that the fields H and H 1 are 
o 

sufficiently stable and homogeneous). We will call this behaviour of the polariza- 

tion P a "spin echo group" and the amplitude of the P oscillation at the symmetry 
x x 

position C will be called "spin echo signal", PNSE" As has been pointed out, the spin 

echo group is the Fourier transform of the ! distribution function, v2f(v), thus the 
v 

narrower this distribution, the more oscillations are contained in the group, as 

shown by the measured curves in Fig. 2. Note that in practice one would change H I 

rather than ~1; furthermore, H and H l will be parallel and the neutron spins are 
o 

flipped at B instead, as in NMR spin echo (cf. Otto Sch~rpf's paper for details). 
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Fig. 2. NSE groups measured with 
two different beam monochromati- 
zations (raw data). 



The way Px can be measured at C consists of applying another ~ turn at this 

into +-P depending on the sense of the ~ turn. Then a usual point, thus turning Px z 

spin analyser placed before the detector allows the determination of P by showing a 
z 

maximum transmission for P =I and a minimum for P =-I. Depending on the sense of the 
z z ]I 

turn at C the Px=l echo maximum will be observed either as a maximum, or as a mini-. 

mum of the detector counting rate N. (A comparison of these two values is one way of 

measuring PNSE.) The data in Fig. 2 were obtained by choosing a P ÷P turn. 
x z 

For those readers familiar with classical polarized neutron work, there is a 

general remark to be made here about the calculation of polarization figures in NSE. 

The usual definition of P=(N+-N_)/(N++N_) has one inconvenience: it is nonlinear in 

N+ and N_, thus it is not additive for different contributions, and the comparison 

of different polarization figures for the same beam, e.g. Px and Pz' becomes tedious 

too. Since the polarizer and analyser efficiencies are constant for the whole experi- 

ment, it is generally more convenient to take the polarization as being just propor- 

tional to the modulation : P=(N+-N_)/No, where the constant denominator No has been 

determined in the usual way from just one of the polarization measurements. This 

gives a linear definition for P, and since polarization figures will only be con- 

sidered relative to each other (e.g. PNSE with respect to the incoming beam polari- 

zation Po or PNSE signals measured for different samples), the polarization effi- 

ciency factors for the different spectrometer components need not be known. For 

example in Fig. 2 we can define the spin echo signal PNSE as (Nmax-Nmin)/2Nave, where 

Nma x and Nmi n correspond to the highest maximum and the lowest minimum of the curve, 

and N is the counting rate outside the spin echo group. 
ave 
To conclude this section let us remark that the essential physical reason for 

the appearance of the NSE group is that at C the Larmor precession angle ~ is sta- 

tionary over the beam: 

~ = 0 

beam 
(4) 

and not that ~ is identically zero. The P preeessing polarization is produced by 
x 

all neutrons in the beam having the same spin direction @ at a given point, no matter 

how this common direction comes about. The shape of the NSE group is then determined 

by the dephasing of the spin precessions "locally", around the echo point, thus it 

depends only on the f(v) distribution of the detected neutron beam. Equation (4) is 

thus the echo condition to be used in what follows. 

2. SPIN ECHO WITH SCATTERED NEUTRON BEAMS 

Let us consider the configuration shown in Fig. 3. This configuration only dif- 

fers from the previous one by the neutron beam being scattered on a sample between 

the forward and backward precessions. For simplicity the precessions in the well con- 

trolled small field around the sample, between H ° and HI, are neglected. (In practice 
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Fig. 3. Application of NSE to inelastic neutron scattering. 
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these count either for Ho or H I, the two precession regions being separated by a spin 

flipper coil, cf. the paper by Otto Schgrpf.) The total Larmor precession angle now 

reads, instead of Eq.(3), 

I~oHo ~'IHI.] = 
@ = ~°in-@out = YL~-v-~ vl J cp(Vo,V I) , (5) 

where v ° and v I are the incoming and outgoing neutron velocities, respectively. If 

there is only elastic scattering Vo=V1=V, in which case the situation is exactly what 

it was before. In inelastic scattering the neutron energy change is the relevant 

quantity in which we are interested, viz. 

1 2 1 2 
tic0 = EI-E ° = ~mv ° - ~mv I = f~c0(Vo,V l) (6) 

The basic idea of NSE inelastic spectroscopy is to use ~ as given by Eq.(5) to 

measure ~. Since ~(Vo,Vl) and ~(Vo,Vl) are different functions, this is only possible 

locally with respect to an arbitrarily chosen value ~ . To achieve this, we will use 
o 

neutron beams such that the average neutron velocities ~o and Vl correspond to ~o: 

~(~o,~i)=~ o. Then we require 

~-~=t(~-~o) (7) 

where ~=~(~o,~I) and t is a proportionality constant. This is the fundamental equa- 

tion of NSE spectroscopy. It postulates that locally around ~'ideal" values given by 

Vo, v I the Larmor precession angle @ becomes a measure of the neutron energy trans- 

fer ~. Obviously this equation can only be satisfied in first order in ~Vo=Vo-~ ° and 



6Vl=Vl-~ I. Namely, from Eq.(5): 

and from Eq.(6) 

~oHo ~IHI 
~-~ = -yL ~--~2~ Vo+YL "--~2" Vl 

v ° vl 

(8) 

co-~ m m_ 
o = 7fiVl&~l - ~Vo6Vo (9) 

Thus the NSE equation (7) is satisfied if the coefficients of the independent vari- 

ables ~v ° and ~v I agree on both sides: 

H H I 
o t~o , (10) YL ~o_-~ = YL~I_--2 = t~-Vl 

v o v l 

Since these equations are identical for both indices 0 and I, in What follows i 

stands for both. Equations (10) are called the NSE conditions. They can be given in 

the more practical form 

~YL£iHi H v3 ~i 
~o o o , t -3 ~- (II) 

ZI H] V~ mv i 2E. 
i 

Equations (l|) are used in practice to choose the ratio of the magnetic fields to ob- 

tain the echo signal and to calculate the proportionality parameter t for Eq.(7). It: 

is obvious that for elastic scattering or for the simple straight beam echo experi- 

ment shown in Fig. |, we get what we had before, namely: iiHl=%oHo , since ~l=~o . 

It can be shown quite generally that the NSE conditions in Eqs.(IO) or (11) 

describe the centre of the NSE group for a scattering process with energy change ~ . 
O 

The essential thing Eq.(7) implies is that ~ depends only on the energy transfer ~, 

which is the relevant parameter for the sample scattering, and it does not explicitly 

depend on v ° and v| separately. Thus the NSE equation (7) is equivalent to the con- 

dition 

6)=(0 
O 

= O (12) 

which has just the form of Eq.(4), and it states that phase ~ is stationary over the 

scattered beam, i.e. the neutrons having suffered an energy change ~ in the scatter- 
o 

ing will produce much the same NSE signal as in Fig. I, but centred at %]Hl/%oHo#l 

[cf. Eq.(ll)]. 

The sample scattering is characterized by the scattering function S(<,~), which 

will be assumed at this point to depend only on ~, since for the moment we are look- 

ing at the energy transfers only. This function describes the probability that the 

neutrons are scattered with the energy change o, and thus it will give, via Eq.(7), 

the distribution function of ~'s in the scattered beam. Consequently, the NSE signal 
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will be given as 

PNSE 

fS(~,~)cos[t(~-~ )]d~ 
= Ps<COS(~_~)> = ps ~ o 

I S(7,~)d~ 
, (13) 

where PS takes into account the eventual change of the neutron polarization by the 

scattering action itself which will be dealt with in detail in Section 4. If there 

is no spin scattering and high magnetic field involved, PS=I. We have to remember, 

however, that the proportionality~7) between ~-~ and ~-~o' only holds to first or- 

and ~v I Thus the integ- der around T ° and Vl' i.e. within a restricted range of 6v ° 

rations in Eq.(13) have to be restricted to this range, which means that in practice 

the incoming beam has to be roughly monochromatic and eventually an analyser has to 

be used for the outgoing beam, too. This amounts to using NSE in combination with a 

classical background spectrometer. This is a very general feature and, in addition 

to the ~ resolution obtained by the spin echo, this background spectrometer provides 

the momentum < resolution. Thus Eq.(|3) shows that the NSE signal PNSE corresponds 
+ 

to the ~ Fourier transform of a given part of S(K,~), as singled out by the trans- 

mission function ("resolution ellipsoid" in the usual terminology) of the background 

spectrometer. This situation is illustrated in Fig. 4 where the shaded areas corre" 

spond to this transmission functio~ and it is also shown that by measuring only ~-~ 
O 

one can study quasi-elastic scattering problems (~o=O) and optical-like, flat sec- 

tions of elementary excitation branches (~o#0). Experimental examples for both cases 

are described in various contributions to this volume. 

In order to obtain full information about the scattering function in Eq.(13), 

PNSE has to be measured at several values of the Fourier parameter t, i.e. at several 

values of Ho at constant Ho/H 1 [cf. Eqs.(ll)]. For example, if the studied part of 

S(K,~) corresponds to a Lorentzian line, which is narrow compared with the background 

spectrometer transmission function (Fig. 4) and is centred at ~ : 
o 

+ (14) s(K,~) = Y 
T2+(~_~o)2 ' 

the integration in Eq.(13) ean be taken from -oo to ~, and it gives 

f [y2+(~-~o)2]-Icos[t(~-~o)]d~ 
PNSE(t ) = PS ~ = e-Yt (15) 

f[y 2+(~-~o)2]-Id~ 
Thus, from the t dependence of PNSE one can check if the line is really Lorentzian 

and one can then determine the linewidth parameter y. 

In practice, the measurement of PNSE occurs in two steps. First the spectro- 

meter has to be calibrated by measuring the NSE signal for a standard sample with 
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Fig. 4. The role of the trans- 
mission function of the host 
("background") spectrometer in 
providing momentum resolution 
and selection of the scattering 
process in different types of 
NSE experiments. 

0 
y=O (e.g. elastic scatterer), and PS=I, of course. The obtained PNSE(t) function can 

be cons ide red  as the  i n s t r u m e n t a l  r e s o l u t i o n  f u n c t i o n  s i nce  i t  d i f f e r s  from I due 

only to the finite overall polarization efficiency of the spectrometer and, what is 

more impor tan t ,  due to the  r e s i d u a l  dephas ing of  the  Larmor p r e c e s s i o n s  brought  about 

by the inhomogeneities of the magnetic precession fields H and H 1 . The absolute 
O 

O 
va lue  of  t he se  inhomogene i t i e s  i n c r e a s e s  wi th  i n c r e a s i n g  Ho and H l ,  thus  PNSE(t) 

itself depends strongly on t, as shown by the experimental curve in Fig. 5. 
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Fig. 5. An example for NSE spec- 
trometer calibration and data 
reduction (see text). The correc 
ted spectrun PNSE corresponds 
to a quasielastic scattering li- 
ne with 0.24 ~eV half-width at 
half maximum. H o is proportio- 
nal to the time parameter t, cf. 
Eq. (11). (INl! data) 
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This insfirumental broadening of the ~ distribution will then convolute with the one 
÷ 

that corresponds to S(<,~) of the sample, which convolution will be translated by the 

Fourier transformation in Eq.(13) to multiplication, viz. the NSE signal PNSE-eff direct- 

ly observed for the sample will be given as 

eff (t)oP~SE(t) PNSE (t) = PNSE , ( 1 6 )  

where PNSE(t) is the function we have been considering above and the one we wish to 

obtain from the NSE experiment. Thus, in contrast to the usual methods, the instru- 

mental resolution effects are taken into account by simple division instead of an 

often ambiguous and tedious deconvolution. This feature of NSE is fundamental for 

llne-shape studies. 

Let us note that for quasi-elastic scattering with ~o=O, PNSE(t) can be given a 

concrete interpretation. Since the scattering function of the sample S(<,~) is given 

as the Fourier transform of the space - time correlation function S(r,t), the cosine 

Fourier transform in Eq.(13) will lead back to the so-called intermediate scattering 

function, viz. 

_>_ 

PNSE(t) = Ps.Re S(<,t) , ( 1 7 )  

where t has the meaning of real, physical time. For isotropic systems S(~,t) is pure- 

ly real, thus PNSE(t) is precisely the time dependent correlation function for fluc- 
+ 

tuations with the selected wave vector K. 

Before turning to the more general formulation of the NSE method, let us con- 

sider the conceptual difference between NSE and conventional inelastic neutron scat- 

tering techniques. Conventionally, the energy transfer ~ is measured by taking the 

difference of the outgoing and incoming energies, i.e. as a difference of two beam 
1 2 1 < 2 

averages: ~m<vl> - ~m Vo>. The resolution in ~ is thus limited by the scatter of 

both v! and Vo. In view of this, high resolution implies correspondingly good mono- 

chromatization, i.e. low neutron intensity, which relation comes directly from the 

well-known Liouville theorem. In NSE the beam average of cosy is measured in a single 

step, i.e. of a quantity which is directly related to the energy change ~. Conse- 

quently, the ~ resolution becomes independent of the incoming and outgoing beam mono- 

chromatization, and the Liouville relation between intensity and resolution does not 

apply. This feature and the high inherent sensitivity of the Larmor precession tech- 

nique are the clues to the new possibilities offered by NSE in high resolution in- 

elastic neutron scattering spectroscopy. 

3. THE GENERAL PRINCIPLE OF NSE 

In the previous section we dealt with scattering functions which locally depend 

only on ~ and not on K. The NSE method in its most general form, as introduced in 
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Ref. 5, (see also the Appendix) can be applied to ~ dependent processes too, like 

elementary excitations with a general dispersion relation (of. Fig. 4). In Ref. 5 

this generalization was obtained from the following basic idea. The scattering of a 

given neutron is described by the incoming and outgoing velocity or momentum vectors 
= m~ ~ m~ 

~Q ~-v ° and <i= ~-Vl , respectively. The sample scattering functions on the other hand 

depend on the transfer parameters 

m -+- ->- 

= K ( V l - V o )  

1 , 2 2 ,  
'hco = ~ m k v l - V o )  

( 1 8 )  

(Note that throughout this paper the absolute value of a vector is denoted by its 
-> 

symbol without the arrow, i.e. v1=Iv If, etc.) Thus the four parameters (K,~) are the 

relevant ones, whereas in conventional neutron scattering spectroscopy the six ir- 

relevant parameters (Vo,Vl) are measured separately. The redundant 6-4=2 free para- 

meters are at the origin of the complexity of the resolution calculations, and since 

+ + and K 1 K a n d  ~ a r e  b o t h  o b t a i n e d  a s  d i f f e r e n c e s  o f  s e p a r a t e l y  m e a s u r e d  q u a n t i t i e s  G ° 

[ e f .  E q s .  ( 1 8 )  ] ,  t h e  L i o u v i l l e  r e l a t i o n  b e t w e e n  i n t e n s i t y  a n d  r e s o l u t i o n  a p p l i e s  a n d  

it alone sets the limits for resolution. (In the classical type backscattering method 

basically designed for ~ independent scattering effects, very much intensity can be 

gained back by the use of huge detector solid angles, cf. the paper by A. Heidemann 

et al.) The quantity involved in general NSE experiments, the total Larmor precession 
-> -> 

angle ~0 - which most generally will be given as ~0=@(Vo,Vl)-depends on both the in- 

coming and the outgoing neutron parameters. It is then conceivable that this function 

~0 has special symmetry in that it depends (locally) on only four relevant combina- 
-+ -> 

tions (18) of six irrelevant parameters (Vo,Vl). Thus for the local variation we re- 

quire that ~=q0(K,o), that is, 

6~o = c~6K + B~co , ( 1 9 )  

where ~ and B are constants. This equation is the most general formulation of NSE. 

It implies that ~ becomes locally, around a point in the (<,~) space, exactly the 
+ 

same kind of four parameter function as S(K,~), and thus, if properly matched, it 

can effectively probe S(K,~) directly in a single step measurement, and it is not 

affected by the Liouville intensity-resolution relation. 

Here I will present a more obvious though less general reasoning which, however, 

leads to the same result. The aim of doing this is to give insight to the signifi- 

cance of the above argument, which in turn made sure that nothing gets omitted. 

Let us consider how the fundamental NSE equation (7) could be generalized for 

the study of dispersive elementary excitation branches. What we have to know in such 

a case is the behaviour of S(<,~) as a function of the distance from the dispersion 
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-+ -~ f-> 

relation Cad(< ) . Indeed, we expect that S(K,~) changes little along the '~d~<) surface, 

i.e. in going along the "ridge" of the excitation branch, but it changes rapidly when 
-> -> 

going across. This amounts to the assumption that locally~ around the point D=(<o,cao) 

(cf. Fig. 4), the scattering function can be approximated by the single variable 

function S D as 
-> -> 

S(<,~) = So[O-~d(<)] (20) 

Note that in effect S(K,~) as it appears in the experiment is already modified by the 

background spectrometer transmission function T(~,~). Thus, SD[~-~H(~)] actually cor- 

responds to the behaviour of S(<,~)T(<,~) averaged over the shaded area where T(<,~)#O. 

If there are scattering contributions inside the transmission area other than 

the ~d dispersion relation we are interested in, these will also be included in S D 

but they will tend to give only a flat background below the peak at ca-~d=O. 

In order to probe function S D using the NSE Larmor precession angle ~, we re- 

quire, instead of Eq.(7), 

~0-@=t I~-~d (<) ] , (21) 

where K---m(Vl-Vo)/l~ , f u r t h e r m o r e  q0=~P(Vo,Vl) , and ~=~(Vo ,Vl )  w i t h  t h e  a v e r a g e  v e l o c i t i e s  
-& 

± and v I being assumed to correspond to the point D on the dispersion relation around V o 

which it is being looked at, that is, 

+ ~ ~ I .÷2 ~2, 
~Ko = m(vl-Vo) fi~o = ~mLvl-Vo) 

-+ 

Od(Ko ) = ~o 

(22) 

Equation (21) is the final, general NSE equation which can again be satisfied to first 

order in ~v.=v ~=O, I% Note that in order to tackle K dependent scattering functions 
1 l 1 

we have to consider the full vector-character of the incoming and outgoing neutron 

velocities, whereas above it was sufficient to look at their absolute values. 

The right hand side of our fundamental equation (21) can, in view of Eqs.(22), 

be written in the differential form 

ca-cad(~) = ÷ ÷ ÷ ÷ ~ = ca-[(K-Ko)'grad~d(Ko)+cad(Ko)J 

(23) 

m~ ÷ m~ ÷ 
= ~(vl-grad~d)~V 1 - ~(Vo-grad~d)~V ° , 

~d 3~d ~d 
where graded=(- ~ , ~< , -~-). 

x y z 

It is seen that ca-~d(K) i s  a v e c t o r i a l  f u n c t i o n  of  ~ v i ' s  , and o b v i o u s l y  t h e  ~ t c h i n g  

~(Vo,Vl) function has to have-the same character i.e. ~ has to depend on the direc- 

tion of v.'s too, not o n l y  on t h e i r  a b s o l u t e  v a l u e s  a s  i n  E q . ( 5 ) .  T h i s  c an  be  a c h i e ~ d ,  
1 
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as suggested in Ref. 5 and shown in Fig. 6, by using precession field regions tilted 

with respect to the main beam directions vi" (Another solution has already been tried 

out, and it is described in this volume in the report on 4He excitations.) 

///JJT 

Fig. 6. Magnetic field configuration for producing Larmor precessions which 
depend on the direction of the neutron velocity. 

It easy to see in Fig. 6 that the Larmor precession angles ~i can be given in the 

differential form, Icf. Eq.(l)]: 

~.H. ~ .H. 

q°i(vi) = YL--~-.- YL ---~(ni6vi ) ' (24) 
I V. 

i 

-+ .+ -~ _ 

where n.1 i s  n o r m a l i z e d  so t h a t  ( n i ~ i ) = v i  . Thus t h e  l e f t  hand  s i d e  o f  t h e  NSE e q u a t i o n  

(21)  r e a d s  [ ~ i = ~ i ( V i  ) ]  

~H £H 
o o÷ ÷ ] I ÷ ÷ 

~-~  = ( e o - ~ o ) - ( ~ 1 - 5 1  ) = -¥L- - -~- (no6Vo )+YL _ ' - ~ - ( n l ~ V l  ) (25)  
v I v 1 

Equation (21) is satisfied if and only if the vector coefficients of the ~.'s agree 
i 

on both sides, i.e. by Eqs.(23) and (25) (i=O,l) 

i i + m + -~ 

yL--~-ni = t~[~Vi-grad~ d(<o ) ] (26) 
V~ 

I 

-+ 

T h i s  e q u a t i o n  i m m e d i a t e l y  d e f i n e s  t h e  d i r e c t i o n  o f  t h e  v e c t o r s  n i ,  i . e .  t h e  f i e l d  

tilt angles O. contained by n. and ~.- 
I i I 

n i I] [Vi-grad~ d ] , (27) 
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÷ 

and by multiplying both sides of Eq. (25) with vi' we get 

~.H. 
i i m _2 ± 

YL~--. = t~Ivi -(vi" graded) ] ' 
i 

- 1 2 
which for convenience can be rewritten (with Ei=~m~ i) as 

3 - ± 
~oHo ~o-Vo (v o" grade d) 
_ - = 

~IH1 -3 - ± 
v 1 - v  I ( v  1 • g radcOd)  

( 2 8 )  

YLZiHi ~i 
t = ~ 2 ÷ = ~ - ÷ (29) 

vim(~i-~i'graded ) 2Ei-m(gi'grade d) 

Equations (28) and (29) determine the ratio of the precession field strengths and the 

time-like constant t in Eq.(21). It will be shown later how t is related to the real, 

physical time. 
÷ 

The distribution of e-~d(<) for the investigated scattering process being given 

by the S D function [ef. Eq.(20)], by virtue of Eq.(2|) one gets for the NSE signal 

I SD(~)cos(t~)d~ 
PNSE (t) = PS" ~ (30) 

f S D ( ~ ) d ~  

Note that since S D is a single parameter function vanishing outside the width of the 

transmission function T, in Eq.(30) ~ is just the energy integration parameter. In 

the experiment, as already discussed above, PNSE(t) will be measured using the nor- 
o 

malization to the instrumental effects contained in PNSE(t), and S D can then be ob- 

tained by Fourier transformation if necessary. 

The setting up of the NSE experiment for the study of a given excitation con- 

÷ ÷ ~o' 81) and Ho/H I to the values sists of tuning the NSE parameters: no, n| (i.e. 

given by Eqs.(27) and (28). It can be seen that these depend not only on (Ko,~ o) via 

± and ~ but also on the slope of the dispersion relation grad~d(~ o) This special V O ]' 

feature of NSE ean be useful in selecting out a given excitation branch at points 

where branches overlap or hybridize. Obviously for the special case graded=O this 

general formulation reduces to what we have seen in the previous section. 

The transmission areas in Fig. 4, as pointed out above, are defined by the back- 

ground spectrometer with which the NSE setup is combined. For the study of elementary 
÷ 

excitations, where a reasonable < resolution is required (few %), the most obvious 

choice for the background spectrometer is the triple axis spectrometer. This particu- 

lar combination is discussed in detail by Roger Pynn later in this book, and in the 

Appendix (6) . 

Let us keep in mind that all the conditions for matching the NSE to a particular 

elementary excitation have been shown to be satisfiable to first order only. Higher 



17 

order terms will introduce instrumental resolution limitations, especially since in 

many cases they will not be directly measureable but only calculable, similarly to 

usual spectrometer resolution functions. To assess their importance we performed 

Monte Carlo simulation calculations with Laci Mih$1y (7) , which have shown that this 

fundamental limitation is typically not worse than I-5 ~eV for usual plhonons and 

magnons. This is illustrated in Fig. 7 by the sample simulation result obtained for 

an NSE-triple axis configuration with typical collimations and monochromator-analyser 

mosaicities. It is seen that the distribution of ~-~, the p(~-~) function (dots and 

dashed lines) reproduces with minimal (~2 ~eV) broadening the distribution of ~-~d(~), 

which for the assumed three parallel phonon branches (insert to Fig. 7) corresponds 

to an S D function consisting of three ~-functions separated from each other by only 

20 ~eV. 
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Fig. 7. Distribution of the total Larmor precession angle showing the general 
NSE focussing effect for inelastic scattering on dispersive elementary 
excitations (see text). The open circles are the data points calculat- 
ed by Monte-Carlo simulation method, the dashed lines are guides to 
the eye. The vertical lines represent the ~-~d energy distribution 
for the model longitudinal phonon branches with zero linewidth (see 
insert). The parameters of the assumed host triple-axis spectrometer 
configuration are: 2.5 ~ incoming neutron wavelength; 40' graphite 
monochromator and analyser; energy loss scattering; Q=3 ~-I reciprocal 
lattice vector; 30'x30'x30'x30' collimation. 
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4. EFFECT OF SAMPLE SCATTERING 

In this section we will consider the direct effect of the sample scattering pro- 

cess on the neutron spin polarization which is taken into account by the factor PS 

[cf. Eq.(|2)]. As mentioned above PS=i if we investigate non-magnetic scatter- 

ing effects and, in addition, there is but a small magnetic field on the sample. 

This latter condition is essential because the various possible neutron paths in the 

sample differ considerably in length. Thus there is always a spurious dephasing of 
O 

the Larmor precession angles, which is of the order of &~=2YLHsd.sin~/v where H is 
s 

the magnetic field at the sample, d the relevant dimension of the sample, O the scat- 

tering angle, and v the neutron velocity (Fig. 8). As is discussed in the paper by 

Fig. 8. Neutron path length 
differences in scattering 
on extended samples. 

Otto Schgrpf, some minimum guiding magnetic field is always required at the sample, 

so H cannot be arbitrarily small. For example, for H =0.5 ~e we get for a typical 
S S O 

maximum sample size d=3 cm and I=5 ~ neutron wavelength A~ = 40 -sin~, which means 

just half of this amount as deviation from the average value of ~. Table I below 

shows the effect of dephasing on the precessing polarization, assuming uniform dis- 
- 1 I 

tribution of precession angles between ~-~ and ~+~. It is seen that Hs fields 

of the order of 0.5 @e, already sufficient as guide fields, produce negligible polar- 

ization losses. On the other hand fields with values of H greater than 5 ~e destroy 
s 

the echo for large samples and scattering angles above 90 ° , and for higher fields this 

limiting scattering angle decreases. Strong H fields of the order of I k~e and above 
s 

at the sample would therefore be excluded by this effect alone and, in addition, such 

high fields inevitably display considerable inhomogeneities too. (However, by the use 

of a trick which will be introduced below as the Ferromagnetic Neutron Spin Echo, 

this difficulty can be circumvented at the expense of a 50 % reduction of the echo 

signal.) At this point we conclude that in ordinary NSE the field at the sample has 

to be kept at a low value, which depends on the geometry of the experiment. This con- 

dition, usually corresponding to an upper limit of few ~e, is generally easily met. 
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Table I. 

Reduction factor N'for the precessing polarization 
produced by uniform distribution of precession angle 

differences between 0 and ~ 

A~0 N Aq0 Q 

20 ° 0.995 

40 ° 0.980 

60 ° 0.955 

80 ° 0.921 

100 ° 0.878 

120 ° 0.827 

140 ° 0.769 

160 ° 0.705 

180 ° 0.637 

200 ° 0.564 

220 ° 0.489 

240 ° 0.413 

260 ° 0.338 

280 ° 0.263 

300 ° 0.191 

320 ° 0.121 

It is interesting to observe that the very reason that NSE, an essentially time- 

-of-flight method, can be of very high resolution is that it is not simply the path 

lengths that count here, but those weighted by the magnetic field values SL=~Hds. 

Thus, a high precision of the flight path definition is only required for the pre- 

cession field regions H ° and H I (where it means stringent requirements, equivalent 

to better than 0.1 ~n geometrical precision, which is to be met by the homogeneity 

of the fields), whereas differences of several centimetres can be tolerated in the 

low field regions, viz. at the sample, where, for high scattering angles, these dif- 

ferences are bound to be comparable to the sample dimensions. 

In order to study the effect of magnetic sample scattering, we need to have a 

look at the action of the spin flipper device separating the two precession fields 

H ° and H I near to the sample (Fig. 9). As mentioned above, in practice the opposite 

sign of the ~o and ~I precessions is produced by this device, also known as a H-coil, 

and not by a theoretically equivalent 180 ° flip of the field direction between H and 
o 

H I . This point will be discussed at length in the next contribution, here we merely 

anticipate part of it. If we consider the spin precession plane (x,y) we can envisage 

the flipper action as a 180 ° turn of the neutron spin around an arbitrary axis in 
+ 

this plane, e.g. around the x axis. Thus a neutron spin polarization P=(Px,Py,Pz) 

will be flipped into P'=(Px,-Py,-Pz). The p~ecession angle ~o' measured for conveni- 

ence with respect to the x axis (Fig. 9a) and given as ~o=arctan(Py/Px ), will corre- 

spondingly be transformed in @~=arctan(-Py/Px)=-~o. This is precisely the key action 

to the echo: neutrons arriving at the w-coil with a precession angle ~o' will appear 

to leave it with -~o" 

At this point, if not earlier, the reader will probably ask himself a question 

about the significance of an obviously arbitrary ±2~n (n=integer) term which can be 

added at any point to the phase ~. The question is completely justifiable and in 
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Fig. 9. Inversion of the sign of the Larmor precession angle by the application 
of a ~ spin flip coil (a) and in paramagnetic scattering (b). 

effect this phase ambiguity drops out only as a consequence of a very natural assump- 

tion about the f(v) velocity distribution function, which was not mentioned before. 

This assumption is that f(v) is not too narrow, or has no too sharp structures so 

that after having gone through the first precession field Ho, the precessing polar- 

ization is completely dephased <exp(i~o)>=ff(v)exp[i~o(V)]dv=Oo In this case the 

~@/~v=O sufficient echo condition, obviously unaffected by an extra ±2~n term, be- 

comes a necessary one, and no precessing polarization can be found outside the neu- 

tron spin echo group. To see a conspicuous example to the contrary, imagine that f(v) = 

=~(V-VA)+~(V-VB) , with v A and v B being constants. In this case precessing polariza- 

tion could occur around any values of Ho and HI, due to the beating between the two 

velocity components v A and VB, and subsequent beating maxima would indeed be separ- 

ated by a 27 phase difference. The NSE polarization signal measured at the values of 

the NSE parameters as given by Eqs.(1|) or (28) above, will obviously be correct, 

i.e. correspond to the scattering function as required by Eqs.(13) or (30). But by 

inspection of the spectrometer response alone we would not be able to find out which 

of the beating maxima is the right NSE group. In practice such problems can occur 

only when the incoming beam is too monochromatic with respect to the number of Larmor 

precessions, that is <exp(i@o)>#O. This corresponds to the illogical situation in 

which the NSE ~ resolution is not really better than that of the background spectro- 

meter. In such a case the maximum of the NSE group might not correspond to the ideal 

NSE conditions, examples for which are shown in Roger Pynn's article in this volume. 

Normally such a situation does not arise if NSE is used as it should be, i.e. to im- 

prove the ~ resolution of the background configuration. 
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In what follows we will consider how NSE can work for various magnetic sample 

scattering processes in which the neutron spin direction changes. This change can be 

checked by simple neutron spin polarization analysis, without the echo. Its effect 

on the echo will be twofold: on the one hand it calls for an appropriate spin flip- 

ping scheme at the sample, and on the other, it gives rise to NSE sample scattering 

polarization factors PS [introduced in connection with Eq.(13)] which are less than 

unity. Note that if there are several scattering processes contributing to the echo 

signal, the NSE spectrum PNSE(t) will be given by the weighted average. The knowledge 

of the different polarization behaviours of the different components might be helpful 

in their decomposition. 

4.1 NSE with nuclear spin incoherent scattering 

This process is characterized by the 5'= -IT-P ~quation, which relates the polar- 

ization ~ of the beam impinging on the sample with that of the scattered one 5'. 

Thus, in addition, to the slow Larmor precessions in the H field at the sample there 
s 

is a ~=~o+~ transformation of the precession angle. This, having no effect on ~/~v, 

the echo signal appears at the same position, but with opposite sense (minima instead 
I 

of maxima) and with amplitude reduced to ~. Of course, the ~-coil is necessary to pro- 

duce the negative sign, and the total transformation between N and H I reads as ~'= 
o o I 

=-~0o±~ (the sign of ~ being irmmaterial). This process obviously corresponds to PS ~ 3" 

4.2 Paramagnetic Neutron Spin Echo(8)(PNSE) 

Paramagnetic scattering, which can be defined most generally as scattering on a 

macroscopically isotropic magnetic sample (i.e. with no strong magnetic field H and 
s 

with isotropically distributed orientations for any kind of eventual locally ordered 

domains), is characterized by the relation 

5, +÷÷ , 2 
= -K(P'K)/K (31) 

between the incoming and scattered beam polarization. This polarization behaviour is 

well-known for the scattering on spin paramagnets, but it will be shown in Sub-section 

4.4 below, that it is valid more generally for isotropic magnetic systems with both 

orbital and spin magnetism. 

It is clear from Eq.(31) that if Hs][~ , i.e. the precession plane (x,y) is per- 
+ 

pendicular to K, 5' will be O for any P in this plane, and thus no spin echo can oc- 

cur in this geometry. We will therefore assume that the ~ scattering vector lies in 

the precession plane and, for convenience, its direction will be taken as the y axis 

with ~o measured with respect to the x axis. (If ~ is at an angle 0 with respect to 

the (x,y) plane, its projection is the y axis, and the final polarization will be re- 

duced by a factor of cosO). Equation (31) then corresponds to the transformation: 

1 i + 1  1 
~' = (O,-Py,O) = (~PxT~Px,O) ~Px,-~Py,O) (32) 

The first term on the right hand side corresponds to the ~o-'-'~o flip; the second to 
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~=~o+~. Thus without any further ~-coil action the first term with the key negative 
! ! 

sign for go will give an echo signal of an amplitude reduced by ~, that is, PS=~ (cf- 

Fig. 9b) or if we use a flipper at the sample, an echo signal of similar amplitude 

opposite phase will be observed, due to the second term (Ps=-~),just as for case but 

4.1. The first possibility is of particular importance since without a flipper there 

will be no confusing contributions to the echo from non-magnetic or nuclear spin 

scattering effects. 

In order to be able to normalize the PNSE signal, we have to know the denomi- 

nator in Eq.(13), viz. the total paramagnetic scattering intensity separated from 

the other contributions. This can easily be achieved by the following, novel proce- 

dure (8) . Let us take classical polarization analysis "spin up" (no-spin-flip) and 

"spin down" (spin-flip) counts, with H parallel to the x direction of a coordinate 
S 

and repeat this with HsIly and HsIlZ. Since in this case ~llH s system, to start with, 

and 5' is also analysed parallel to HslI~ , the paramagnetic contribution to the Ni-N + 

counting rate modulation is given as [cf. Eq.(32)] 

÷÷ ÷÷2 2 Ni-N iP e = Np(P.P')=-Np(p.~) /K , (33) 

where Np is the total paramagnetic intensity we want to determine. Adding together 

the modulations for the three subsequent H orientations, x, y and z, we get 
S 

(Ni-N+)jP P ~ = -NP I~]2(Km+K2+K2)/<mx y z =-NP P2 , (34) 
j=x,y,z 

where in effect p2 stands for the efficiency of the polarizer-flipper-analyser system. 
÷ 

In addition we make sure that one of the axes, say the y axis, is perpendicular to K 

(e.g. by being perpendicular to~ ~the scattering plane) in which case we get Ky=O, i.e. 

the paramagnetic modulation (N~-~)y=O,___ and we can observe the pure contribution of 
÷ ÷  

the non-paramagnetic (NP) effects, for which P'=P always holds: 

(NiNP-~NP~) y=NNpP 2 (35) 

Since this contribution is the same for x and z, we find for the combination below of 

the total modulations with N=NP+N NP, 

(Ni-N+) j-3 (N+-N+) y= (N+-N+) x+ (Ni-N+) z-2 (N+-N+) v=-NpP 2 (36) 
j=x,y,z 

An example of PNSE experiment is described in the contribution of Amir Murani and in 

Ref. 8 (see the Appendix). 

4.3 Ferromagnetic Neutron Spin Echo (FNSE) 

If we wish to study a ferromagnetic sample by NSE, we have to apply a strong 

magnetic field to saturate it, in order to avoid the well-known complete depolariza- 

tion of the beam. Thus, as pointed out above, the Larmor precession will be complete- 

ly dephased around the sample, and all information contained in ~o'S concerning the 

incoming beam polarization are lost, unless we do something about it. The situation 
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is obviously the same for all samples which have to be studied in a "high" magnetic 

field, independently of ferromagnetism. 

We will utilize the simple fact that the mon-precessing zllH s component of the 

polarization is maintained in a proper adiabatic guide field, as it is well-known in 

polarized neutron work. Thus, applying a 90 ° turn to the neutron spins after H o ' we 

can turn one component of the (x,y) precessing polarization, say x, into the z direc- 
T 

tion. This can then be turned back by another ~ coil to the relevant x direction 

afcer the scattering, when entering H I . The other two components are assumed to be 

completely dephased in the sample region, i.e. the spin history between He and H| is 

the following 

(e 'P 'P ) ÷ (P '-P 'P ) + x + x x y z ~ z y x + (O,O,P) ÷ (P ,O,0) 

! ! | 
coil H s field ~ coil 

The final polarization P'=(Px,O,O) can be considered again as a sum of two terms 

I 1 1 1 
(Px, O,O) = (~Px,~Py,O)+(~x,-~Py,O) , (37) 

where the first corresponds to ~=~o and the second to ~o-'--~o" Thus the second term 

gives an echo signal of 50 % amplitude (Ps=I). 

Note that here the complete elimination of Py, a necessary condition for FNSE 

to work correctly, corresponds to "forgetting" the sense of the rotation for ~o,i.e. 
• 1 i~^ I -i~ 

mathematically it corresponds to going from e l~° to cOS~o=~e u+~e ~. This method 

has been tested but not yet used in experiments. Its applications can include, be- 

sides experiments in high fields, in particular the study of magnons for which an 

additional spin-flip occurs at the scattering, P'x ÷ -Px' which produces a change in 
I 

the sign of the echo signal described by PS=-~. 

4.4 Antiferromagnetic Nsutron Spin Echo (AFNSff) 

In the previous section we have seen that the introduction of a preferred mag- 

netization direction in a ferromagnet necessarily leads to the primary dephasing of 

the Larmor precessions around the sample, due to the saturation moment and the high 

magnetizing field. On the other hand, in an antiferromagnetic single crystal the 

crystalline sya~netrymight produce a preferred direction, or a few preferred direc- 

tions for the atomic magnetic moments, without any strong field to be applied. We will 

therefore consider NSE experiments on magnetically anisotropic samples in low mag- 

netic fields. The cardinal point is that the polarization behaviour of the neutron 

beam scattered from a macroscopieally isotropic magnetic sample is exactly the same 
÷, ÷ ÷÷ 2 

as for paramagnetic samples, i.e. P =-K(P'K)/< . (Because this theorem does not seem 

to have been recognized before, it will be proved below.) Thus the paramagnetie NSE 

situation will apply to any sample, paramagnetic or not, in which the eventual local 

anisotropies (e.g. preferred direction of the moments) are averaged out on the macro- 

scopic scale. Similarly, the antiferremagnetic NSE will be defined as the situation 
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that applies to samples with zero saturation moment and with macroscopically aniso- 

tropic magnetic correlations, even if they are not actually antiferromagnetic; an 

example of such a material would be a tetragonal single crystal displaying critical 

fluctuations in the paramagnetic phase. 

Let us recall here that magnetic neutron scattering is related to the magnetiza 

tion-magnetization correlation functions, which include both spin and orbital contri- 

butions (9). For an isotropic system we have (i,j=x,y,z) 

<M.> = 0 
1 

<M.M°> = 0 i#j (38) 
i 3 

<M~.M.> = <M.M.> 
ix jJ 

The first two lines follow from the fact that the symmetry operation of 180 ° rota- 

tion, e.g. around the y axis, would transform M to M =-M and <~ M > to <M M >. 
x -x x x y -x y ÷ 

Identifying the ~ interaction potential in equations (10.37) and (10.41) on pp. 

330 and 331 of Ref. 9 with the component of the magnetization vector perpendicular 
+ 

to the momentum transfer K, viz. 

÷ ÷ ÷ ÷  ÷ ÷ -~ 
M/(<) = M(K)-K[M(K)'~]/K 2 , 

we are left with the following very general expression, after suppression of the 

terms vanishing by virtue of Eqs~38), for the scattered beam polarization: 

< (Mj_P) ~j_> + ~' = <M-L(M-LP)> + - p<(MiSj)> 
+~+ , (39) 

where the < > brakets stand for the averaging over the sample states as given in de- 

tail in equation (]0.33) in Ref. 9. For clarity and simplicity we will consider this 
÷ 

equation in a coordinate system for which ~/< is one of the base unit vectors, say x 
-> 

Thus Mj_=(O,My,M z) and 

<ML(P M +P M )> + <(P M +P M )M,> 
~, = ~ y, Z z y y z z ~" _ ~ = 

<3vl~M + M~+M > 
yy zz 

(4O) 
-~ ~ -> 

2yP <~i M > + 2zP <M~'M > 
= ~ y y y. y z z _ ~ 

<M*M + M*M > 
yy z z 

In view of the last of the equations (38), finally we get 

~, (O,ey,ez)_~ _~.p ÷ ÷ + . 2 . . . .  K(P'K) IK (4|) 
X 

which is the required result. 

Note that the promises we used, i.e. Eqs.(38), mean somewhat less than total 

isotropy; they will be satisfied, for example, by a cubic single crystal too if it 
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contains equal volume fractions of opposite antiphase domains (if they apply), which 

is the condition for the first two equations in (38) to hold. 

The simplest case of antiferromagnetic NSE is the example of a tetragonal single 

crystal with 0 # <MyMy>-<MzMz> = <~My+MzMz>A, where A describes the anisotropy, and 

there is no antiphase domain asy~netry. Thus from Eq.(40) we readily find that 

~, = (-Px,APy,-APz) 

If the sample guide field H is in the z direction we get for the precessing polar- 
S 

ization, if (x,y) is the precession plane [Pz=O, of. Eq.(32)] 

~' = ~(-Px,Py) +@(-ex,-ey) , (42) 

where the first term1.A shows the familiar ~o ÷ -~o flip, producing an NSE signal with 

the amplitude pS=~.__ (The paramagnetic case corresponds to A=O.) The mnisotropy also 

makes PS depend on the crystal orientation, showing a maximum when the preferred mag- 

netization direction is parallel to the y axis. For a tetragonal collinear antiferro- 

magnet this maximum is unity which was in fact observed in an early test in 1974. 

Finally, if the sample contains only a single AF antiphase domain, which is of- 

ten difficult to achieve anyway, none of the above trivial symmetry arguments holds, 

and one has to go through the whole complicated formalism of polarization analysis 

in order to interpret the NSE results. This is the most specific case of AFNSE but, 

unfortunately, nothing simple and general can be said about it. 

The main conclusions in this section are summarized in Table II below, which 

gives a list of the sample environments and the NSE signal amplitudes for the dif- 

ferent types of echoes considered 

Table II. 

Different types of NSE configurations 

L 

Sample environment: NSE signal 
Type flipper coils Hs field PS 

Normal NSE 

non-magnetic scattering 

nuclear spin 
incoherent scattering 

Paramagnetic NSE 
(isotropic samples) 

Ferromagnetic NSE 

Antiferromagnetic NSE 
(anisotropic samples) 

n o n e  

n o n e  

small 

small 

small 

high 

small 

I 

1 
3 

1 
g 

1 

1~ max  
7-Ps 21 
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Conclusion 

We have seen that the NSE technique can be applied for a variety of inelastic 

scattering processes and for both magnetic or non-magnetic samples. But the real con- 

clusion of this introductory paper is in fact contained in the contributions which 

follow. At this point I should just like to express my gratitude for many stimulating 

discussions to a large number of colleagues, first of all to the authors of this 

volume and to many ethers at the ILL together with those I have already thanked in 

the preface. I should particularly like to thank the audiences who attended the talks 

I have given at various places, whose questions and sometimes difficulties with these 

ideas were certainly invaluable for my own understanding. 
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